Search results for "Generic health relevance"

showing 10 items of 21 documents

Phosphorylation of CENP-A on serine 7 does not control centromere function.

2019

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viab…

0301 basic medicine1.1 Normal biological development and functioningScience[SDV]Life Sciences [q-bio]CentromereGeneral Physics and Astronomy02 engineering and technology[SDV.BC]Life Sciences [q-bio]/Cellular Biologymacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleSerineChromosome segregation03 medical and health sciencesHistone H3Underpinning researchCentromereGeneticsHumansViability assayPhosphorylationlcsh:ScienceComputingMilieux_MISCELLANEOUSCancerGene EditingMultidisciplinaryQGene targetingGeneral Chemistry021001 nanoscience & nanotechnologyCell biologySettore BIO/18 - Genetica030104 developmental biologyChromosome segragationHela CellsPhosphorylationEpigeneticslcsh:QGeneric health relevance0210 nano-technologyFunction (biology)Centromere Protein AHumanHeLa CellsNature communications
researchProduct

CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

2016

SummaryHuman centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding …

0301 basic medicineChromosomal Proteins Non-HistoneMedical PhysiologyEpigenesis GeneticChromosome segregationModelsChromosome SegregationKinetochoresGeneticsTumormitosiKinetochorekinetochoreCell biologyChromatinChromosomal Proteinsprotein degradationCENP-ACENP-BepigeneticCENP-C1.1 Normal biological development and functioningKinetochore assemblyCentromerechromosome segregationMitosismacromolecular substancesBiologyProtein degradationModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencesGeneticUnderpinning researchCentromere Protein ACell Line TumorCentromereGeneticsHumansMitosisNon-HistoneBiologicalSettore BIO/18 - Genetica030104 developmental biologyGeneric health relevanceBiochemistry and Cell BiologyauxinCentromere Protein AEpigenesisCell Reports
researchProduct

DEBATE: Do interventions based on behavioral theory work in the real world?

2019

Abstract Background Behavioral scientists suggest that for behavior change interventions to work effectively, and deliver population-level health outcomes, they must be underpinned by behavioral theory. However, despite implementation of such interventions, population levels of both health outcomes and linked behaviors have remained relatively static. We debate the extent to which interventions based on behavioral theory work in the real world to address population health outcomes. Discussion Hagger argues there is substantive evidence supporting the efficacy and effectiveness of interventions based on behavioral theory in promoting population-level health behavior change in the ‘real world…

0301 basic medicineComparative Effectiveness ResearchEfficacyDebateApplied psychologyPopulationHealth BehaviorPsychological interventionMedicine (miscellaneous)Behavioural sciencesPhysical Therapy Sports Therapy and RehabilitationEffectivenessPopulation healthHealth behaviour changeMedical and Health SciencesEducation03 medical and health sciences0302 clinical medicineBehavior TherapyBehavioral and Social ScienceHumans030212 general & internal medicineCausationeducationlcsh:RC620-627education.field_of_studyBehavior030109 nutrition & dieteticsNutrition and DieteticsPopulation HealthBehavioural interventionsPreventionlcsh:Public aspects of medicineBehavior changelcsh:RA1-1270Health outcomeslcsh:Nutritional diseases. Deficiency diseasesParadigm shiftImplementationSpiteGeneric health relevancePublic HealthPsychologyInternational Journal of Behavioral Nutrition and Physical Activity
researchProduct

The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors.

2019

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well…

0301 basic medicineG proteinGeneral Science & TechnologyArticleGeneral Biochemistry Genetics and Molecular BiologyReceptors G-Protein-Coupledimmunology03 medical and health sciencesG-Protein-Coupled0302 clinical medicineHistory and Philosophy of ScienceReceptorsExtracellularAnimalsHumanscancerstructural biologymechanosensationReceptordevelopmentG protein-coupled receptorChemistryGeneral NeuroscienceneurobiologySciences bio-médicales et agricolesTransmembrane proteinCell biology030104 developmental biologyStructural biologyGeneric health relevanceSignal transductionadhesion G protein-coupled receptor030217 neurology & neurosurgeryIntracellularsignal transductionSignal Transduction
researchProduct

One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!

2016

Abstract Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony formin…

0301 basic medicineSystems biologySaccharomyces cerevisiaeCellBioengineeringSaccharomyces cerevisiaeInvestigationsBiologyyeastQH426-470lag time03 medical and health sciencesGenetic HeterogeneityLag timeSingle-cell analysismedicinePopulation Heterogeneitycarrying capacityGeneticsDoubling timeMolecular BiologyThroughput (business)Genetics (clinical)030304 developmental biologyCell Proliferation0303 health sciencesGenomeEcology030306 microbiologyCell growthSystems BiologyCell CycleHuman Genomebiology.organism_classificationYeast030104 developmental biologymedicine.anatomical_structurePhenotypeFungalGene-Environment Interactiongrowth ratefitness assessmentGeneric health relevanceGenome FungalSingle-Cell AnalysisBiological systemG3: Genes, Genomes, Genetics
researchProduct

FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices.

2021

International audience; Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever- increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among d…

0301 basic medicineconformationOpen scienceComputer scienceStructural Biology and Molecular BiophysicsAMINOACYL-TRANSFER-RNAINTRAMOLECULAR DISTANCE DISTRIBUTIONSReview ArticleRESONANCE ENERGY-TRANSFER01 natural sciencesbiomoleculesFREELY DIFFUSING MOLECULESDocumentationFluorescence Resonance Energy TransferMainstreamstructural biologyBiology (General)General NeuroscienceQRNANO-POSITIONING SYSTEMGeneral MedicinedynamicsINTRINSICALLY DISORDERED PROTEINSSingle Molecule ImagingFLUORESCENCE CORRELATION SPECTROSCOPY[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsMedicinecommunitysingle-moleculeQH301-705.5ScienceAppeal[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsBioengineeringchemical biology010402 general chemistryGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesALTERNATING-LASER EXCITATIONBiochemistry and Chemical Biologymolecular biophysicsbiochemistryMolecular BiologyStructure (mathematical logic)General Immunology and MicrobiologySINGLE-MOLECULE FRETTRANSITION PATH TIMESData science0104 chemical sciences030104 developmental biologyFRETPosition paperGeneric health relevanceBiochemistry and Cell BiologyeLife
researchProduct

Putting molecules in their place.

2014

Each class of microscope is limited to imaging specific aspects of cell structure and/or molecular organization. However, imaging the specimen by complementary microscopes and correlating the data can overcome this limitation. Whilst not a new approach, the field of correlative imaging is currently benefitting from the emergence of new microscope techniques. Here we describe the correlation of cryogenic fluorescence tomography (CFT) with soft X‐ray tomography (SXT). This amalgamation of techniques integrates 3D molecular localization data (CFT) with a high‐resolution, 3D cell reconstruction of the cell (SXT). Cells are imaged in both modalities in a near‐native, cryopreserved state. Here we…

Biochemistry & Molecular BiologyImage ProcessingStatistics as TopicMedical PhysiologymikroskopiaArticleFluorescenceCORRELATED IMAGINGImagingImaging Three-DimensionalComputer-AssistedCORRELATEDtomografiaYeastsTOMOGRAPHYImage Processing Computer-AssistedHumansMicroscopyTomography X-RayfluorecenceMicroscopy FluorescenceThree-DimensionalX-RaySOFT X-RAYBiomedical ImagingGeneric health relevanceBiochemistry and Cell BiologyBiotechnology
researchProduct

Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

2015

Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin reve…

BlastomeresTranscription GeneticCellular differentiationMedical and Health SciencesEmbryo Culture TechniquesEpigenomeNeural Stem CellsDevelopmentalMyocytes Cardiacbeta CateninOligonucleotide Array Sequence AnalysisEndodermGene Expression Regulation DevelopmentalEmbryoCell DifferentiationBiological SciencesStem Cells and RegenerationTrophoblastsmedicine.anatomical_structureembryonic structuresStem Cell Research - Nonembryonic - Non-HumanStem cellEndodermCardiacTranscriptionBrachyuryGrowth Differentiation Factor 151.1 Normal biological development and functioningBiologyCell LineGeneticUnderpinning researchmedicineGeneticsHumansHuman embryoCell LineageBlastocystMolecular BiologyEmbryonic Stem CellsMyocytesBlastomereHuman embryonic stem cellGene Expression ProfilingTrophoblastFibroblastsDNA MethylationStem Cell ResearchHuman trophoblast stem cellEmbryonic stem cellMolecular biology102Fate specificationBlastocystGene Expression RegulationGeneric health relevanceTranscriptomeDevelopmental Biology
researchProduct

Kif3a interacts with Dynactin subunit p150 Glued to organize centriole subdistal appendages.

2013

Formation of cilia, microtubule-based structures that function in propulsion and sensation, requires Kif3a, a subunit of Kinesin II essential for intraflagellar transport (IFT). We have found that, Kif3a is also required to organize centrioles. In the absence of Kif3a, the subdistal appendages of centrioles are disorganized and lack p150(Glued) and Ninein. Consequently, microtubule anchoring, centriole cohesion and basal foot formation are abrogated by loss of Kif3a. Kif3a localizes to the mother centriole and interacts with the Dynactin subunit p150(Glued) . Depletion of p150(Glued) phenocopies the effects of loss of Kif3a, indicating that Kif3a recruitment of p150(Glued) is critical for s…

CentrioleKnockoutKinesinsBiologycentriole cohesionKif3aMedical and Health SciencesArticleGeneral Biochemistry Genetics and Molecular BiologyMiceMicrotubuleIntraflagellar transportInformation and Computing SciencesAnimalsHumansKIF3AMicrotubule anchoringMolecular BiologyCentriolesMice KnockoutGeneral Immunology and MicrobiologyGeneral NeuroscienceCiliumTumor Suppressor ProteinsNuclear ProteinsKinesinDynactin ComplexBiological SciencesCell biologyCytoskeletal ProteinscentrosomeCentrosomeHela CellsDynactinGeneric health relevanceMicrotubule-Associated Proteinsp150(Glued)HeLa Cellssubdistal appendageDevelopmental Biology
researchProduct

Storytelling and story testing in domestication

2014

The domestication of plants and animals marks one of the most significant transitions in human, and indeed global, history. Traditionally, study of the domestication process was the exclusive domain of archaeologists and agricultural scientists; today it is an increasingly multidisciplinary enterprise that has come to involve the skills of evolutionary biologists and geneticists. Although the application of new information sources and methodologies has dramatically transformed our ability to study and understand domestication, it has also generated increasingly large and complex datasets, the interpretation of which is not straightforward. In particular, challenges of equifinality, evolutio…

Crops AgriculturalProcess (engineering)InferenceCropsEquifinalityBiologyModels BiologicalAgricultural scienceGeneticModelsMultidisciplinary approachevolutionAnimalsHumansNarrativeNeolithicDomesticationDomesticHybridizationagricultureAgriculturalinferencemodelNarrationMultidisciplinaryInterpretation (philosophy)The Modern View of Domestication Special FeatureBiologicalData scienceAnimals DomesticHybridization GeneticGeneric health relevanceStorytelling
researchProduct